Open-Software Tools for the Analysis of Electrochemical Impedance Spectra

AiMES ECS Data Science Showcase

Matthew D. Murbach and Daniel T. Schwartz

Department of Chemical Engineering and Clean Energy Institute
University of Washington, Seattle

1 October 2018

mmurbach@uw.edu
matt_murbach

W

mdmurbach
Goal: extract *physically meaningful* and *reliable* insights from data

- Battery health
- Relative impact of kinetics/transport
- Quantitative parameters
- ...

Goal: extract *physically meaningful* and *reliable* insights from data

Current analysis options:

- Potentiostat software
- Proprietary 3rd party software
- Code written in individual labs

Goal: extract *physically meaningful* and *reliable* insights from data

Current analysis options:

- Typically clunky to use
- Proprietary/hidden algorithms (can't reproduce!)
- Difficult to share and improve

Goal: extract *physically meaningful* and *reliable* insights from data

Current analysis options:

- Typically clunky to use
- Proprietary/hidden algorithms (can’t reproduce!)
- Difficult to share and improve

Community-driven, open-source tools improve reproducibility and accelerate science

What will the future of impedance analysis look like?

- Fast, **reproducible** analysis of impedance spectra
- Easy-to-use software that encourages **best practice**
- **Community-driven** toolkit grows with improved methods for interpretation and analysis
An example: Scikit-learn has made high-quality machine learning available to all

- machine learning made easy-to-use
- Easy to apply and compare different models, open and powerful enough to accomplish real tasks
- The key is the community-driven api
1st steps: Python package + web-based GUI

impedance.py

ImpedanceAnalyzer

impedance.py demo
https://github.com/ECSHackWeek/impedance.py
ImpedanceAnalyzer demo

https://github.com/mdmurbach/ImpedanceAnalyzer

Moving from beta to ImpedanceAnalyzer v1.0

- Login/save data and settings
- Additional physics-based datasets
- Implement confidence interval estimation and visualization
- Drag-n-drop circuit creation
- Desktop vs. web application
Expanding usability and features of impedance.py

- Incorporate interactive visualizations
- Additional equivalent circuit and physics-based models and elements
- Improve initialization of smart parameter guesses
- Improve data validation methods
- ...
longer-term vision:

open API for data, analysis, and interpretation pipeline
Thank you!

- Neal Dawson-Elli
- Qin Pang
- Simon Timbillah
- Prince Sarfo
- Jason Bonezzi
- Prof. David Beck
- Prof. Dan Schwartz
- Victor Hu
- Erica Eggleton
- Linnette Teo
- Yanbo Qi